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Abstract

Plant and firm level growth rates exhibit significant fat-tailed be-
havior. I show that these tails still exist after conditioning on some
standard explanatory variables like the age and size of a plant, and
that the resultant distributions are well-described by a Laplace distri-
bution. I then simulate a simple model which relaxes the standard cen-
tral limit theorem by allowing for random numbers of random shocks.
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1 Introduction

The relationships between firm growth and firm size and age has garnered
much attention. Gibrat (1931), Hart & Prais (1956), Simon & Bonini (1958)
and Hymer & Pashigian (1962) on through (e.g.) Evans (1987), Dunne et al.
(1989) and Cabral & Mata (2003), examine the variation of firm or plant
growth rates by and within industries, by size, or by age of plant, firm and
industry (among others). The more recent work has taken advantage of the
richer panel data sets now available.

Recent empirical evidence, first highlighted by Stanley et al. (1996),
points to a tent-shape in the logarithm of the unconditional densities for
firm growth. Higher moments of the distribution indicate a dramatic depar-
ture from normality in the tails and in a way which is robust to conditioning
on industry and size.

I find tent-shaped densities after conditioning on the age as well as size
and industry of the plant. Bottazzi & Secchi (2005) argue that a ”success
breeds success” type of stochastic plant growth model, based on Polya’s urn
can explain the tent shape in the limit. I propose a more general potential
stochastic process which may be based on size and age. I then simulate a
simple model using this process which is able to replicate some notable facts
about the distribution.

Section 2 discusses the data and several stylized facts therein. Section
3 discusses a parametric form for the distribution called a Subbotin or gen-
eralized exponential distribution and fits the distribution to the data, con-
ditioning on several elements. Section 4 proposes a way to generate these
distributions from normal shocks and simulates the proposal. Section 5 con-
cludes.

2 Data

The data are from the Chilean manufacturing census Encuesta Nacional
Industrial Anual conducted by the Instituto Nacional de Estadisticas. All
plants of 10 employees or over are surveyed. Data are from 1979 to 1996 at
an annual frequency. A wide variety of industries, from bakeries to motor
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vehicles, are included.

Throughout, I consider several measures of firm size and growth. I con-
sider number of employees, operating income and total wages as measures
of firm size.12 The data on employees is the most extensive of the three, so
apart from some robustness comparisons, I use number of employees as our
primary measure of size.

2.1 Growth

For many of our growth measures, it is sensible to first demean our size mea-
sures. I remove year-industry cohort means from each of our size measures3

and then take log differences:

si,t = log Si,t − 1

I

∑
j∈I

log Sj,t

gi,t = si,t − si,t−1

where Si,t is the size of plant i in industry I at time t.4

Distributions of plant growth rates are fat-tailed relative to the normal
distribution. Figure 1 plots the empirical density relative to the normal on
a log scale, so as to better highlight the tails. On this scale, growth rates,
evidently, are tent-shaped. Figures 2, 3, and 4 show that the tent-shape is
robust across some important subsamples.

2.2 Size

Figures 5 - 11 show that the distribution of sizes is approximately a Pareto
or power distribution (with the exponent given by the slope coefficient in

1See Appendix for exact definitions.
2Data on assets were not available for enough firms to be included.
3Henceforth, ”demeaning” refers to this specific procedure.
4Alternative ways of demeaning (for example demeaning the growth rates instead of

the levels) do not make a significant difference to the results.
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Figure 1:
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Binned empirical density of plant growth rates as measured by number of employees. Normal density has
zero mean and the same variance as the included data. Data are demeaned according to above. Data for
all industries and all years are used.
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Figure 2:
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Binned empirical density of plant growth rates as measured by number of employees. Data are demeaned
according to above. Data for all years are used. Industries are classified according to the United Nations
Classification system ISIC Rev 2.: plastics (3560), textiles (3220), and bakeries (3117).
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Figure 3:
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Binned empirical density of plant growth rates. Data are demeaned according to above. Data for all
industries and all years are used.
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Figure 4:
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Binned empirical density of plant growth rates. Data are demeaned according to above. Data for all
industries and all years are used.
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Figure 5:
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Binned empirical density of plant sizes by employees. Data are not demeaned. Data for all industries and
all years are used. An OLS fit gives a slope of -1.2415 (with a standard error of .0992). The log-likelihoods
of a power law distribution and log-normal distribution are -5.0865e+005 and -4.3004e+005, respectively.
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Figure 6:
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Size densities − plastics

Binned empirical density of plant sizes by employees. Data are not demeaned. Data for all years are
used. An OLS fit gives a slope of -0.8018 (with a standard error of .1371). The log-likelihoods of a power
law distribution and log-normal distribution are -2.1750e+004 and -1.8023e+004, respectively.

Figure 7:
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Size densities − all bakeries

Binned empirical density of plant sizes by employees. Data are not demeaned. Data for all years are
used. An OLS fit gives a slope of -1.5550 (with a standard error of .0979). The log-likelihoods of a power
law distribution and log-normal distribution are -7.8439e+004 and -6.5606e+004, respectively.
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Figure 8:
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Binned empirical density of plant sizes by employees. Data are not demeaned. Data for all years are
used. An OLS fit gives a slope of -1.1813 (with a standard error of .1075). The log-likelihoods of a power
law distribution and log-normal distribution are -3.3795e+004 and -2.8067e+004, respectively.

Figure 9:
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Size densities − 1 year old

Binned empirical density of plant sizes by employees. Data are not demeaned. Data for all years and in-
dustries are used. An OLS fit gives a slope of -1.3997 (with a standard error of .1214). The log-likelihoods
of a power law distribution and log-normal distribution are -6.0863e+004 and –5.0522e+004, respectively.
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Figure 10:
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Size densities − 6 year old

Binned empirical density of plant sizes by employees. Data are not demeaned. Data for all years and in-
dustries are used. An OLS fit gives a slope of -1.2422 (with a standard error of .1295). The log-likelihoods
of a power law distribution and log-normal distribution are -3.2126e+004 and -2.6908e+004, respectively.

Figure 11:
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Binned empirical density of plant sizes by employees. Data are not demeaned. Data for all years and in-
dustries are used. An OLS fit gives a slope of -1.0746 (with a standard error of .1804). The log-likelihoods
of a power law distribution and log-normal distribution are -1.9500e+004 and -1.6657e+004, respectively.
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Figure 12:

−4 −3 −2 −1 0 1 2 3 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

de
ns

ity

Growth rate residuals after controling for lagged growth and size

Residual growth rates

Binned empirical density of residuals of regression of demeaned growth rates on size, lagged demeaned
growth rates (as measured by number of employees) and plant level fixed effects. Normal density has
zero mean and the same variance as the included data. Data for all industries and all years are used.

each figure). A specific case of a power distribution is Zipf’s distribution,
which has a slope of −1. Comparing log-likelihoods, the empirical distribu-
tion may be better characterized by a log-normal distribution (e.g. Hart &
Prais (1956)) 5

Growth rates are significantly negatively autocorrelated and negatively
correlated with size. These correlations are robust to demeaning growth
rates and/or size. Figure 12 plots the residuals after controlling for these

5Comparing log-likelihoods of non-nested models with dissimilar numbers of parameters
should be done sparingly.
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Table 1: Volatility on Size and Age
log(σ)
employees -.0019 .0440

(.0073) (.0074)

age -.0220 -.0231
(.0010) (.0010)

constant -2.4272 -2.2767 -2.3904
(.02732) (.0108) (.0272)

σ is the standard deviation of the demeaned growth rates of employees.
Standard deviations of coefficients included in parentheses.

correlates.

The volatility of growth rates obeys a power law σ = kSα. The coefficient
on size is about zero (though statistically significantly positive in the last re-
gression)6. If growth came from shocks that were distributed identically and
independently across each incremental size (across employees, for example),
then α should be −.5.7 If growth were independent of size then α should = 0.
From table 1 shows, volatility is about constant with size. Also, volatility
falls with age. Older plants are more stable than young ones.

3 Fitting A Distribution

3.1 A More General Distribution

Growth rates distributions are not well described by a normal distribution.
Still, they are symmetric and single peaked. A more general distribution,
which nests both the normal distribution and the Laplace distribution is a
generalized error distribution or Subbotin distribution, from Subbotin (1923).

6If I remove industry and year means from both our measure of growth and our measure
of size, I get a fall in variance (with size) for the very smallest plants. Still, the coefficient
on size for the whole sample remains slightly positive.

7This is the typical benchmark in the literature (e.g. Amaral et al. (2001) and Teitel-
baum & Axtell (2005))
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Figure 13: Density of the Subbotin distribution for various b
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It has a pdf:

fS(x) =
1

2ab1/bΓ(1/b + 1)
e−

1
b
|x−µ

a
|b . (1)

b is a shape parameter. a effects the scale while µ is the mean. Γ(x) is the

gamma function =
∞∫
0

t−xe−tdt.

The Laplace or double exponential distribution has pdf:

fl(x) =
1√
2σ

e
−|x−µ√

2σ
|
. (2)

The Laplace distribution is a special case of the Subbotin distribution,
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Table 2: Industry Estimation Results
Industry b Industry b
Slaughtering 0.97 Fruit & Vegetable Canning 0.951

(0.017) (0.019)

Fish Canning 0.972 Grain Mill Products 0.969
(0.016) (0.020)

Bakeries 0.973 Wine 0.924
(0.006) (0.020)

Spinning & Weaving 0.982 Knitting Mills 0.979
(0.014) (0.014)

Manu. Wearing Apparel 0.99 Manu. Footwear 0.987
(0.010) (0.015)

Sawmills 0.954 Furniture Manu. 1.01
(0.001) (0.016)

Printing & Publishing 0.989 Plastics Manu. 0.988
(0.013) (0.013)

Structural Metal Manu. 0.979 Motor Vehicles 0.976
(0.017) (0.021)

Other Fabricated Metal 0.981 Other Machinery 0.965
(0.017) (0.019)

Standard deviations of coefficients included in parentheses.

with b = 1. The normal distribution is also a special case, with b = 2.

3.2 Estimation Results

Tables 2 and 3 contains results from the maximum likelihood estimates of
the parameter b. For brevity’s sake, I report just those industries which con-
tained over 1000 observations in the data. Table 2 presents the same results
by age of plant.

All series, whether by industry or by age, are distributed nearly Laplacean
and significantly different from normal.8. These results are broadly similar

8A Kolmogorov-Smirnov test of the empirical distribution against Laplace and normal
distributions also indicates that the Laplace is a much better fit for all series. The KS
test, though widely used in such a manner, is not precisely appropriate for testing against
fitted theoretical distributions
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Table 3: Age Estimation Results
Age b Age b
2 0.975 3 0.981

(0.007) (0.008)

4 0.984 5 0.977
(0.009) (0.009)

6 0.980 7 0.971
(0.010) (0.010)

8 0.974 9 0.979
(0.010) (0.011)

10 0.971 11 0.971
(0.011) (0.012)

12 0.963 13 0.962
(0.012) (0.013)

14 0.968 15 0.980
(0.013) (0.019)

16 0.969 17 0.971
(0.014) (0.016)

18 0.965
(0.015)

Standard deviations of coefficients included in parentheses.
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to previous estimates of b for different conditional distributions (for instance,
Bottazzi & Secchi (2005) condition only on industry), though with tighter
standard errors.

4 A simple model for generating a Subbotin

distribution

4.1 Stochastic Process

There are a wide variety of shocks that may effect plant growth: cost shocks,
demand shocks, and technology shocks, just to name a few. Moreover, in any
given time period, the number as well as the size of such shocks is random.
In this section I show that if the number of shocks is random and each indi-
vidual shock is normal, then the sum of such shocks can attain a distribution
similar to the empirical distribution of growth rates.

I use the following theorem adapted from Andrews & Mallows (1974):

Theorem 4.1 : If X has a density function fX which is symmetric about
zero, ∃ independent random variables W,Z with Z ∼ N(0, 1) and X = Z/W
if and only if:

(− d

dy
)kfX(

√
y) ≥ 0 for y > 0

There is no general closed form solution for the pdf of W when X ∼ fS,
though it is generally stable.9 For the Laplace case, X ∼ fl with standard
deviation σ,

fW (W ) =
2

σ2W 3
e−(σ2W 2)−1

. (3)

The following proposition is the main theoretical result of this paper:

Proposition 4.2 : Let x = B(v), where

v ∼ fV (v) =
2v

σ2
e−

v2

σ2 (4)

9West (1987) provides a good way to solve for fW for this class of distributions.
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then x ∼ fl with variance σ2.

Proof: See appendix.

Plants draw from a Brownian motion process B(v) of length v. This is
the continuous analogue of letting x be a draw from a random number v
of standard normal shocks. It is also isomorphic to one in which a shock is
drawn from a normal distribution with a random variance.10 Still, the process
above seems a much more intuitive description of plant growth. The routine
assumption of a fixed number of shocks per period used in most models is
with loss of generality. Underlying such an assumption is an assumption
that the distribution of the number of shocks is sufficiently thin-tailed for
the standard central limit theorem to hold.

4.2 Simulation

I simulate a growth process for a cohort of firms with no dynamic interac-
tion between plants. I start each of 100000 plants at 10 employees and then
simulate for 20 years at an annual frequency. I choose parameters so that
the variance of growth rates, conditional on age and size, matches the results
from table 1. Any firm that is not larger than 10 employees at the end of 20
years is then dropped from the sample. This is an over-simple simulation,
intended as a ”spin around the block”.

Figures 14 and 15 show the results from this simulation. The size distri-
bution appears to be a truncated log-normal or possibly a power distribution.
The likelihood for a power distribution is larger than the likelihood for a log-
normal. The slope is −6, however, which is significantly different from the
empirical slopes as well as from Zipf’s distribution (power distribution with
slope = 1) often referred to in the literature.

10In fact, Subbotin distributions are useful for Monte Carlo simulations for just such a
reason. See e.g. Box & Tiao (1973). The rate of decline in the tails of fV is proportional
(but not linearly so) to the shape parameter b.

17



Figure 14:
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Figure 15:
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5 Conclusion

Plant growth rates have fat tails; though symmetric, extreme events happen
far too often for the distribution to be normal. Instead, the distribution is
best characterized by a Laplace distribution. We have shown that this char-
acterization holds up to conditioning on age and size in a simple parametric
way. Nevertheless, the nondecreasing volatility with size in this data set is a
new result.

I show that this growth distribution may arise from random numbers of
shocks per period. That shocks are random both in their quantity as well as
their size seems intuitive, but the interesting consequences this added dimen-
sion may have for many models is often overlooked or implicity assumed away.

Many further avenues of research remain. A distribution over the number
of shocks should be incorporated into models of firm growth and size to ex-
amine the implications. For instance, random numbers of shocks may effect
the speed of learning in a model like those of Jovanovic (1982) or Abbring &
Campbell (2005). Interesting market dynamics and frictions can be included
by using a framework like Ericson & Pakes (1995). Less parametric estimates
of the conditional distributions should be pursued as well. Searching for ev-
idence of the number of shocks in a period may provide a way to test our
hypothesis.11

The discussion of fat-tails in the asset pricing literature (starting with
Engle (1982)) may be relevant. That literature has followed a progressive
disaggregation, from monthly or daily frequencies to tick or trade by trade
level data, as the empirical evidence has indicated it was necessary. Similarly
disaggregated plant data (say, at the employee level) may prove necessary as
well.

11Indeed, the Chilean data set contains reports on the number of days lost to striking
employees.
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6 Appendix

6.1 Data Construction

Employees measure is the sum of the following data series: Owners (Male),
Owners (Females), White Collar Production Workers (Male), White Collar
Production Workers (Females), White Collar Executives (Male), White Col-
lar Executives (Females), White Collar Administrative (Male), White Collar
Administrative (Females), Blue Collar Production Workers (Males), Blue
Collar Production Workers (Females), Blue Collar Nonproduction Workers
(Males), Blue Collar Nonproduction Workers (Females), Workers At Home
(Male), Workers At Home (Females), Salesperson On Commission (Male),
Salesperson On Commission (Females).

Total wages measure is the sum of the following data series in thou-
sands of Pesos: Wages White Collar Workers, Wages of Blue Collar Workers,
Bonuses of White Collar Workers, Bonuses of Blue Collar Workers, Payroll
Taxes (White Collar Workers), Payroll Taxes (Blue Collar Workers), Fam-
ily Allowance Taxes (White Collar Workers) Family Allowance Taxes (Blue
Collar Workers).

A firm is counted as born in the year that it first appears in the data set.
A firm dies the last time it exits the data set.

6.2 Proof of Proposition 4.2

Proof The Subbotin distribution satisfies the requirements for Theorem 4.1.
Let the density of x, f(x) be:

f(x) =
1

2a
e−|x/a|

From Theorem 1, x can be written x = Z/W , where Z ∼ N(0, 1). General-
izing from West (1987), the density of W is then:

fW (W ) =
2

σ2W 3
e−(σ2W 2)−1

0 ≤ W ≤ ∞.

So x = vZ where:

fV (v) =
2v

σ2
e−

v2

σ2
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Then:

f(x) =

∞∫

0

φ(0, v)fV (v)dW

where φ(0, v) is the density of a normal distribution with mean 0 and vari-
ance v. x, as a mixture of normals, can be written as Brownian motion of
random length v. The proposition then follows. Q.E.D.
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