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1 Introduction

There exists a substantial number of papers concerned with the empirical
testing of convergence of per capita output across countries. The typical
neoclassical growth model implies that per capita real incomes in different
countries should converge, or at least should only differ by a mean-reverting
amount. Endogenous growth models, on the other hand, permit a much
wider variety of long-run output paths, including deterministically and/or
stochastically diverging differences. The economic and policy implications of
these models and therefore of convergence/divergence are large and varied.

Many of the initial time series tests for convergence are concerned only
with univariate output differnces and consider them only in an I(1) vs. I(0)
framework. A finding of converegence usually hinges on the rejection of the
null of an I(1) output differential as according to a Dickey-Fuller-type statis-
tic. Evidence in favor of convergence is infrequently found, particularly if
some sort of structural break is not permitted.1 Ericsson & Halket (2002)
note that univariate tests typically have low power and show that a multi-
variate Johansen procedure may be able to detect convergence among some
countries where a univariate (or even bivariate cointegration) approach had
failed. They also note that multivariate tests are more likely to find conver-
gence if convergence is a group phenomenon, as in Quah (1997)’s convergence
clubs.

More recent research has noted that convergence is not an I(1) vs. I(0)
phenomenon and, therefore, that tests for convergence should allow for frac-
tional integration (denoted I(d), with the order of integration, d, not neces-
sarily an integer). Dickey-Fuller and Phillips-Perron type tests use as null and
alternative hypothesies d = 1 and d = 0, respectively and thus may spuri-
ously reject mean-reversion if the output differences are I(d), with 0 < d < 1,
while multivariate Johansen procedures may find too much spurious coin-
tegration.2 Silverberg & Verspagen (1998), Juncal Cunado & de Gracia
(2003a), and Beyaert (2003) test for mean-reversion in output differentials
in a fractional integration framework and Michelacci & Zaffaroni (2000) pro-
poses a thoretical, neoclassical growth model that could generate fractionally
integrated and fractionally cointegrated per-capita outputs.

1For example, see Evans (1998) and Li & Papell (1999).
2For the theoretical and Monte Carlo evidence on univariate tests see Diebold & Rude-

busch (1991) and Gonzalo & Lee (2000), respectively. For more on I(1) vs. I(0) multivari-
ate cointegration tests, also see Gonzalo & Lee (2000).
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We propose to test for fractional integration in per capita output and per
capita output differentials using the procedure developed by Hurvich & Chen
(2000). We then propose to test for bivariate cointegration without imposing
a (1,−1) cointegrating vector using a method outlined by Chen & Hurvich
(2003a). Finally and more generally, we test for multivariate cointegration,
following the procedures of Chen & Hurvich (2003c) and Chen & Hurvich
(2003a).

This paper is organized as follows. Section 2 briefly rehashes the notion
of fractional integration and cointegration. Section 3 discusses typical defi-
nitions of growth convergence. In section 4, we describe our data. In section
5, we describe our estimation procedures. We present our results in section
6. Section 7 concludes.

2 Fractional Integration and Cointegration

A process Yt is said to be fractionally integrated of order d (hereafter I(d))
if its pth difference has spectral density

f(λ) ∼ C|λ|−2(d−p), λ → 0+,

where C > 0 and p is a nonnegative integer such that d − p < 0.5. Alterna-
tively, and perhaps more familiarily, Yt is I(d) if

[(1 − L)dYt = ut,

where ut is I(0). A deterministic-trend-free I(d) process where:

• d ≥ 1 is non-mean-reverting and non-stationary,

• 1 > d ≥ .5 is mean-reverting and non-stationary,

• .5 > d > −.5 is stationary,

• d ≤ −.5 is stationary but non-invertable.

Typically, an I(0) process is called a short-memory process whereas an I(d), d >
0, process is said to have long-memory (but transitory if d < 1 and permanent
otherwise).

Following Chen & Hurvich (2003c), suppose a process is a (q × 1) series
such that its (p − 1)th difference, {yt}, is weakly stationary with common
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memory parameter d ∈ (−p + 0.5, 0.5) and the integer p ≥ 1. We say the
original process is cointegrated with rank r, (1 ≤ r < q), and s cointegrating
subspaces, (1 ≤ s ≤ r), if:

yt = A0xt + A1u
1
t + ... + Asu

s
t , (1)

where Ak (0 ≤ k ≤ s) are (q × ak) full-rank matrices with a0 = q − r
and a1 + ... + as = r, all columns of A0, ..., As are linearly independent, {xt}
is an (a0 × 1), I(d) process, and {u(k)

t }, k = 1, ..., s, are (ak × 1), I(duk
)

processes, with −p− 0.5 < dus
< ... < du1 < d < 0.5. It is worth noting that

differencing the original series p − 1 times reduces any additive polynomial
trend of p − 1 order or less to a constant in the differenced series {yt}.

3 Searching for Growth Convergence

Across the many empirical searches for “convergence”, a variety of definitions
of convergence has been explicitly or implicitly used. For the purposes of this
paper, we sketch three general types of convergence definitions using the I(1)
vs. I(0) framework3. Let {Y i

t } and {Y j
t } be the log of real per capita output

of country i and country j, respectively, and are assumed I(1).

1. Stochastic Convergence (e.g. (Carlino & Mills 1993)): {Y i
t } and {Y j

t }
are said to be stochastically converging if

Y i
t − Y j

t = c + δt + uij,t, uij,t ∼ I(0). (2)

If δ is such that the absolute per capita output difference tends to
get smaller over time, then stochastic convergence has also been called
catching-up convergence (Bernard & Durlauf 1996). If δ is of the op-
posite sign, then the countries are deterministically diverging.

2. Deterministic Convergence (e.g. (Li & Papell 1999)): {Y i
t } and {Y j

t }
are said to be deterministically converging if

Y i
t − Y j

t = c + uij,t, uij,t ∼ I(0). (3)

Deterministic convergence implies stochastic convergence, but not vice
versa. For both deterministic and stochastic convergence, if |c| > 0,
then the countries are conditionally converging.

3These definitions follow Ericsson & Halket (2002)’s
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3. Zero-mean Convergence (e.g. (Bernard & Durlauf 1996)): {Y i
t } and

{Y j
t } are said to be unconditionally or absolutly converging or con-

verging to a zero-mean if

Y i
t − Y j

t = uij,t, uij,t ∼ I(0). (4)

Many of the studies that test for convergence using one or more of the
above definitions do so using univariate or bivariate tests. Univariate tests
are usually an augmented Dickey-Fuller (ADF) test or some variant thereof
(see Li & Papell (1999) for an example of the former and Evans (1998) and
Cheung & Pascual (2004) for panel variation examples). ADF tests assume
I(1) residuals as a null hypothesis and I(0) as an alternative, and thus have
reduced power to find convergence in a fractional integration framework.
Bivariate tests for convergence like Bernard & Durlauf (1995) and Ericsson
& Halket (2002) test for cointegration with a (1,−1) cointegrating vector
and typically (for example, if using the Johansen procedure) take I(0) and
I(1) as null and alternative hypotheses, respectively.

A pairwise procedure, in practice, usually assumes a base-country (that is,
a fixed j for Y j

t ) either implicity or explicitly. An assumption of this sort typ-
ically rules out the possibility of detecting convergence clubs. Furthermore,
studies like Bernard & Durlauf (1995), Oxley & Greaseley (1995) and Cellini
& Scorcu (2000) find few cases of convergence if a structual break (in the
trend or mean) is not allowed. However, using the above sorts of definitions
of convergence, it is not immediately clear what the implications of a stuc-
tural break are: How many breaks can “reasonably” be permitted between
countries that are otherwise considered converging? Additionally, it is not
clear to us that a trend in the cointegrating residual provides any evidence
of convergence, even if it has the “proper” sign. Cointegrating relationships
are long-run relationships so deterministic convergence today means deter-
ministic divergence in the future, if we are to take a cointegrating process
with a trend seriously.4

Some recent studies (e.g. (Beyaert 2003)) have relaxed the definition of
convergence to account for the possibility of fractionally cointegrated pairs of

4Empirical convergence studies like this paper and many of those cited herein lack a
formal theoretical model and may suffer from the “measurement without theory” critique
of Koopmans (1947) and Sargent & Sims (1977). Interestingly, like Sargent & Sims (1977)
do in their investigation of business cycles, we end up using cross-spectral techniques so
as to avoid using econometric models that we do not take seriously.
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countries (or fractionally integrated differences in log per capita output). By
allowing for fractional integration and cointegration, we are able to seperately
identify mean-reversion and stationarity. We use the following defintions of
convergence for a bivariate setting: Assume Y i

t and Y j
t are both I(d), d ≥ 1.

If Y i
t and Y j

t are cointegrated with a (1,−1) cointegrating vector and the
cointegrating residual uij

t is I(dij), dij < 1 then we say countries i and j
are converging. Otherwise we say they are diverging. If the countries are
converging and E[uij

t ] = 0, we say there is zero-mean convergence. Moreover,
the lower dij is the stronger (or perhaps faster) the convergence. A fractional
cointegrating approach provides a framework where many of the above issues
are avoided or at least mitigated. Our procedure for estimating the order
of integration d is robust to the possible presence of low-order polynomial
trends and structural breaks in the mean and trend parameters (c and δ in
the above notation). As noted above, however, a bivariate approach using
one base country is not appropriate if the countries are in fact in convergence
clubs. In practice, one can test all possible pairings of countries, but then
a contradictory conclusion is possible5. A multivariate approach can detect
convergence clubs. A seemingly natural extension of the bivariate fractional
integration convergence defintions to a multivariate framework is to examine
the cointegrating residuals uk

t from (1) for mean reversion. However, it is
possible to have a mulitvariate cointegrating system which presents possibly
contradictory conclusions. In practice then, determinations of convergence
and divergence should be made carefully.

4 Data

Our data is annual data from the G-7 countries6 from 1889-1994 from Mad-
dison (1995) and Maddison (2001)7. Figure 1 presents the logarithm of real
per capita GDP for all seven countries.

As can be seen from figure 1, there is a substantial and different “dis-
ruption” to per capita real GDP for each of the countries during the WWII
years. We choose to view these disruptions as part of the underlying process

5For instance, it is possible that, in sample, testing concludes that countries i and j

and countries j and k are pairwise converging but countries i and k are not.
6Canada (CA), Germany (DE), France (FR), Italy (IT), Japan (JP), the United King-

dom (UK), and the United States (US)
7with some corrections for minor and obvious typographic errors
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Figure 2: Log real gdp per capita of each country vs. US
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both because our methodology is built to account well for these kinds of dis-
turbances and because our sample would be unsuitably short if we only used
post-WWII data. Since most work, including our own, uses, at least in part,
the US as a base country for pairwise convergence studies, we also include
figure 2.

5 Methodology

In this section, we present our methodology for determining the order of in-
tegration of a series, for finding fractional cointegration in a bivariate setting
and then in a multivariate setting, and, finally, for finding the presence of a
deterministic trend in a fractionally integrated series.

5.1 Fractional Integration

Following Hurvich & Chen (2000) and Chen & Hurvich (2003b), the discrete
Fourier transform of a vector sequence of data {ξt}n

t=1 is:

wξ,j =
1

(2πn)
1
2

n∑

t=1

ξte
iλjt, j = 1, ..., ñ, (5)

where ñ = [n−1
2

] and λj = 2πj

n
. We note that wξ,j remains unchanged if we

replace {ξt} by {ξt+C} because
∑n

t=1 eiλjt = 0. Then, the cross-periodogram
Iζξ,j = wζ,jwξ,j, where wξ,j is the complex conjugate of wξ,j.

Next, we define the taper8 ht = 1
2
(1−e

i2π(t− 1
2 )

n ) and the tapered transform
of {ξt}n

t=1

wT
j =

1

(2π
∑

(|ht|2))
1
2

n∑

t=1

htyte
iλjt. (6)

Tapering the data helps reduce the periodogram bias (called leakage) caused
by strong peaks and troughs in the spectral density. A taper also mitigates
the potential loss of information from overdifferencing and is helpful for esti-
mating the mean of a potentially overdifferenced series9. The cost of tapering

8This taper is adapted from Hurvich & Chen (2000) and the tapered transform is for
series that need to be once differenced to stationarity. For the general version of this taper
see their paper.

9see Deo & Hurvich (1998) for further discussion
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is a loss of efficiency in the estimation of the order of integration10, d. Hur-
vich & Chen (2000) find the above defined taper to be most efficent among
a class of tapers and safely usable on series with a true order of integration
d ∈ (−1.5, 0.5). If we note that wT

ξ,j =
√

2{0.5wξ,j−0.5wξ,j+1e
−i π

n}, it follows

that the tapered cross-periodogram IT
ζξ,j = wT

ζ,jw
T
ξ,j is an estimator of the

spectrum f(λζξ,j̃), where j̃ = j + 1
2
.

Beyaert (2003) uses the same data but does not use a taper. Tapers are
usually bell-shaped and, in the time domain, they accentuate the middle
part of the series at the expense of the two ends. For our data, this middle
includes the WWII years. Beyaert does not want to emphasize this part of
the data and uses the less robust method of Marmol & Velasco (2002)11.
Nevertheless, we maintain that the effects of a taper are best viewed in the
frequency domain, where they remain substainially ameliorative. Figures 4
and 5 help illustrate this.

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
−8

−6

−4

−2

0

2

4

ca
de
fr
it
jp
uk
us

Figure 3: Log periodogram vs Log frequency

This is the log of the periodogram of log real GDP per capita yi
t at the Fourier frequencies vs. the log of

the Fourier frequencies.

10This loss of efficiency becomes more prominent if d ≈ 0.
11In order to avoid using a taper, Beyaert chooses a method which does not require

differencing the data. However, this method is only appropriate for d ∈ (−0.5, 1.5). As we
find below, this is somewhat too close for confort.
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Figure 4: Log vs Log: ∆yt

Same as figure 3, except using ∆yi
t

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
−26

−24

−22

−20

−18

−16

−14
ca
de
fr
it
jp
uk
us

Figure 5: Log vs Log: ∆yt
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Same as figure 3, except using the difference of the tapered series, ∆y
i,T
t
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To estimate d, we use the tapered Gaussian semi-parametric estimator
(d̂GSET ) of Hurvich & Chen (2000):

d̂GSET = arg min
d∈(−1.5,.5)

{log (
1

m

m∑

j=1

λj̃
2dIT

j ) − 2d

m

m∑

j=1

log λj̃}, (7)

where12 m ≈ n0.8. d̂GSET of a series with d ∈ (−1.5, 0.5) and constant
mean and using the above taper is consistent and asymptotically normal
with asymptotic variance 1.5

4m
. The GSET estimator also provides a pseudo-

estimate of d when d ≥ 0.5. This is important in practice (see below). Com-
paritively, the untapered Gaussian semi-parametic estimate has an asymp-
totic variance of 1

4m
but is biased towards zero. A small sample correction

for the variance (also from Hurvich & Chen (2000)) is

Var(d̂GSET ) ≈ 1.5/(4
m∑

j=1

ν̃2
j ), (8)

where

ν̃2
j = log(2 sin(

λj̃

2
)) − m−1

m∑

j=1

log(2 sin(
λj̃

2
)).

It is worth noting that a good eyeballing method is to examine the slope of
the plot of log(Ij̃) vs. log(λj̃) at low frequencies. The steeper is the downward
slope, the higher is d. This also provides good intuition as to why leakage
causes an untapered estimate of d to be biased towards zero: leakage leads
to side lobes near sharp peaks in the data, which reduces the slope of such a
plot. A flatter slope implies a d̂ closer to zero. In practice, we:

1. Taper the series and then get estimate (or pseudo-estimate) d̂GSET .

2. If d̂GSET ≈> 0.5, difference the untapered series and then repeat step
1.

3. d̂GSET of the original series = d̂GSET,p + p, where d̂GSET,p is the GSET
estimate of the pth times differenced series.

Since d̂GSET is invariant to the addition of a constant to the series, differenc-
ing the series p times makes d̂GSET invariant to pth-order trends. Differencing
the untapered series avoids confounding the trend.

12For larger samples, n0.7 or less may more appropriate. This sample is relatively small
though.
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5.2 Fractional Bivariate Cointegration

Following Chen & Hurvich (2003a), define the averaged tapered periodogram
of two processes {xt}n

t=1 = {∆Xt}n
t=0 and {yt}n

t=1 = {∆Yt}n
t=0, with dX =

dY ∈ (0.5, 1.5), as13

F̂ T
xy(mo) =

2π

mo

mo∑

j=1

Re{IT
xy,j}, 1 ≤ mo <

n

2
, (9)

where mo is a bandwidth parameter. Since we are using a taper, mo can be
held fixed. Otherwise, mo → ∞. Suppose the true cointegrating relationship
is (−βo, 1) such that yt −βoxt = ut and correspondingly Yt −βoXt = Ut with
du < dx. Then an estimate of βo is

β̂mo
=

F̂ T
xy(mo)

F̂ T
xx(mo)

. (10)

β̂mo
is ndx−du consistent; it is always at least as fast as OLS of y on x. In

practice, since dx and du must be estimated, standard errors for β̂mo
are not

computed.
Following most of the literature, we choose to estimate bivariate cointe-

gration, first using the US as a base country (that is, all other counrtries vs.
US, pairwise). We estimate the cointegration residual d̂US,i twice: using an

unrestricted (that is, estimated) β̂mo,US,i, and restricting β̂mo,US,i = 1, as is
often done. We then repeat the exercise using DE as a base country, in order
to search for potential convergence clubs.

5.3 Multivariate Fractional Cointegration

Following Chen & Hurvich (2003c) and Chen & Hurvich (2003b), let14 {yt}n
t=1 =

{∆Yt}n
t=0, where Yt is the (q × 1) vector of the q countries’ log real GDP per

capita at time t, each of which is I(dy). To examine the validity of this re-

striction, we first compute d̂res, the restricted version of d̂GSET adapted from
Lobato (1999) and Chen & Hurvich (2003b):

d̂res = arg min
d∈[−1.5,0.5]

{log | 1

m

m∑

j=1

IT

yy,j̃
j̃2d| − 2qd

m

m∑

j=1

log j̃}. (11)

13Hereafter we assume that the original log real GDP per capita series have at most a
linear trend.

14Appologies for recycling notation.
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Typically, we could follow with a Hausman-type test for equality of orders
of integration. Lobato (1999) and Chen & Hurvich (2003b) have derived
distributions for this test. However, these distributions do not account for
the possibility of cointegration under the null and thus are not valid for our
purposes. We leave this for future examination. Nevertheless, d̂res remains a
good benchmark for eyeballing.

Let F̂ T
yy(mo) be the averaged tapered cross-periodogram15. Let λi and β̂i

be the eigenvalues (ordered from smallest to largest) and their corresponding
eigenvectors of F̂ T

yy(mo), respectively. Chen & Hurvich (2003b) note that the r
smallest eigenvalues correspond to the r strongest cointegrating relationships.
One way to determine r is:

r̂ = arg min
u<q

{V (n)(q − u) − σ̂u+1,q}, (12)

where {V (n)} some deterministic sequence such that

ndu+d

V (n)
+

V (n)

n2d
→ 0, σ̂j,q =

q∑

i=j

n2dλi.

In practice, the choice of {V (n)} often allows the user to “choose” r̂, so
it is easier to just eyeball the eigenvalues, looking for a large jump. The
eigenvectors corresponding to each of the eigenvalues correspond, with high
probability, to the space spanned by the cointegrating vector:

sin(Θ) = Op(n
du−dy), (13)

where sin(Θ) is the square-root of the sum of the squared lengths of the
residuals from the orthogonal projection of the r ’smallest’ eigenvectors onto
the cointegrating vectors.

5.4 Estimation of a Trend

As stated above, we assume that there is at most a first order trend in the log
real GDP per capita series. Furthermore, we would like to test the cointe-
grating residuals for first order trends, as the presence of a trend can muddle
notions of convergence (and even point to a deterministic divergence). Three
methods by which we could estimate trends in the cointegrating residuals ui,t

are:
15mo > q + 3
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1. OLS of ui,t on a trend term,

2. the mean of {∆ui,t} and

3. the mean of {∆uT
i,t}, the differenced, tapered residuals.

For residuals with dui
≤ 0.5, the mean of the untapered, differenced series is

inappropriate, but for 1.5 > dui
' 0.7, it is at least as efficient, if not more16.

We thus use the mean of the untapered, differenced series.

6 Results

6.1 Integration Results

Table 1 presents results on the estimation of the trend and the order of
integration for each country’s GDP17 series as well as the order of integration
when all series are restricted to have the same order. No country has a
significant trend. There is a noticeable downward bias in d̂∆gdp and CA, UK

and US are each significantly more than I(1), as is d̂res. Output growth has
long memory.

6.2 Bivariate Cointegration Results

Tables 2 and 3 present the unrestricted and restricted bivariate cointegra-
tion results using US as a base country, respectively. For the unrestricted
results, the cointegrating vector is (−β̂11, 1) for the series (GDPUS, GDPi).
Except for perhaps CA and almost certainly in the case of DE, the vector
is different from (−1, 1). Unrestricted, only the CA cointegrating residual is
mean-reverting, though no residual is significantly different from 1. Restrict-
ing the cointegrating vector raises all but CA’s residual; not surprising given
that all other vectors were quite different from (−1, 1). Given the restricted
bivariate results, it is not surprising that most previous bivariate studies have
rejected convergence, despite the fact that US seems to be cointegrated with
both CA and UK, at least18.

16For further discussion and the precise variance formulas see Deo & Hurvich (1998),
though they examine a different taper then the one above.

17Henceforth GDP refers to the log of real per capita GDP.
18a reminder that cointegration need not imply mean-reversion
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Table 1: Degree of Integration

CA DE FR IT JP UK US
ˆtrend∆gdp 0.0205 0.0196 0.0194 0.0225 0.0293 0.0132 0.0180

σ ˆtrend∆gdp
(.0961) (.0682) (.0814) (.0628) (.0733) (.0662) (.1057)

d̂gdp 0.9502 0.9430 0.9580 0.9388 0.9422 0.9509 0.9504

d̂∆gdp 1.2034 1.0888 1.1018 1.1702 1.0825 1.2867 1.1201

d̂T
∆gdp 1.3398 1.1508 1.1577 1.2124 1.1138 1.3847 1.3368

T denotes tapered series
All statistics refer to the order of integration of the orginal level series.
σd̂T

∆gdp
= 0.1296, adjusted for small sample

d̂res = 1.2765

Tables 4 and 5 present the same using DE as a base country. There
is no evidence of cointegration in the unrestricted case and slight evidence
of cointegration with FR in the restricted case (though of the non-mean-
reverting variety).

Table 2: Unrestricted Estimation vs US

(m=11) CA DE FR IT JP UK

β̂11 0.7928 -0.7776 0.5679 -0.2186 0.2100 0.3263
dui

0.9043 1.0348 1.1420 1.2084 1.1124 1.1190
σdu

0.1296

Table 3: Restricted Estimation vs US

(m=11) CA DE FR IT JP UK
dui

0.8746 1.2992 1.1568 1.2718 1.1475 1.1280
σdu

0.1296
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Table 4: Unrestricted Estimation vs DE

(m=11) CA FR IT JP UK

β̂11 -0.1729 0.0266 0.4466 0.0682 -0.1376
dui

1.2639 1.1500 1.1423 1.1168 1.2889
σdu

0.1296

Table 5: Restricted Estimation vs DE

(m=11) CA FR IT JP UK
dui

1.3102 1.0090 1.0782 1.1678 1.2314
σdu

0.1296

6.3 Multivariate Cointegration Results

Table 6 presents the full multivariate cointegration results. The smallest
eigenvalue is over 100 times smaller than the largest; evidence of some coin-
tegration. The cointegrating vectors are naturally difficult to make sense of.
Some elements in some of the vectors are probably insignificantly different
from zero (for instance, DE and FR in the second vector). Even after some
sensible simplifications, the vectors are still hard to make economic sense
of: many different stories could probably be told so we will not try. Nev-
ertheless, several of the cointegrating residuals are significantly reduced and
are mean-reverting - potential evidence for convergence - though all are non-
stationary. Furthermore, from table 7, we see that each residual still contains
no significant trend19.

Table 8 presents the multivariate cointegration results using only the
Euro area countries. There is some evidence of cointegration in this sub-
group. Though we cannot reject permanent memory for any residual, the
strongest cointegrating relationship may be mean reverting. This is a poten-
tial convergence club within the larger group.

19Even though d̂u1
> d̂u2

, they are not significantly different
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Table 6: Mulitvariate Cointegration Results

eigval 4.5x10−9 4.9x10−9 2.0x10−8 4.3x10−8 1.3x10−7 3.6x10−7 6.2x10−7

Corresponding Eigenvectors
CA -0.0532 -0.6178 0.0026 0.1950 0.6642 0.3340 0.1574
DE 0.2894 0.0461 0.1925 -0.3436 0.5077 -0.7057 0.0565
FR -0.1686 0.0026 -0.4826 -0.5348 -0.0492 0.0778 0.6664
IT -0.5018 0.3505 -0.0884 0.5964 0.1962 -0.3291 0.3391
JP 0.2647 -0.2578 0.5537 0.1943 -0.3821 -0.0782 0.6058
UK 0.7489 0.3023 -0.4054 0.3433 0.1267 0.1532 0.1616
US -0.0484 0.5792 0.5012 -0.2158 0.3134 0.4964 0.1404
Integration order of cointegrating residual
d∆uT 0.6991 0.6271 0.7570 0.8687 1.1207 1.2902 1.3366
σd

∆uT
0.1296

Table 7: Trend Results

trend -0.0067 -0.0030 -0.0124 -0.0066 -0.0232 0.0042 -0.0473
(.0116) (.0112) (.0231) (.0283) (.0555) (.1205) (.1822)

mean 4.6993 3.7921 2.1484 1.7380 12.2810 -0.0099 18.0291
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Figure 6: Multivariate Cointegrating Residuals vs. Time

Smallest eigenvalue = 1, largest eigenvalue = 7
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Figure 7: Differenced Cointegrating Residuals vs. Time

Same as figure 6.

Table 8: Euro Area Mulitvariate Cointegration Results

eigval 3.2x10−8 2.4x10−7 3.8x10−7

Corresponding Eigenvectors
DE -0.4219 0.8293 0.3664
FR -0.3604 -0.5242 0.7716
IT 0.8319 0.1935 0.5200
Integration order of cointegrating residual
d∆uT 0.8663 1.0057 1.4560
σd

∆uT
0.1296
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7 Conclusions

This paper has examined convergence among the G-7 countries using a bivari-
ate and then multivariate framework. Traditional I(1) vs. I(0) time series
tests for convergence are biased towards convergence or non-convergence,
depending on the framework. A fractional integration framework seperates
long memory and non-stationarity properties from mean-reversion. In some
respects, a bivariate cointegration analysis is more natural and easier to in-
terpret, but may fail to pick up convergence in the presence of convergence
clubs. Multivariate cointegrating frameworks are robust to convergence clubs
but results can be hard to interpret. In the case of the G-7, we find little
evidence for convergence in the bivariate framework. Multiple multivariate
cointegrating relationships exist, including some with non-stationary, mean-
reverting residuals. However, the cointegrating vectors do not lend a clear
convergence interpretation.

Convergence clubs have traditionally been found in data which include
both developing and developed nations, so the multivariate framework may
be more enlightening if more countries are included in the analysis. Our mul-
tivariate procedure is data intensive, though, and, to our knowledge, there
currently exists insufficient data sets to pursue this sort of analysis. Further-
more, more work on the various asymptotic distributions of parameters used
in fractional cointegration needs to be done.
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